EEL 711/ELL 711 Major Test

Semester I 2015-2016

Answer all questions (Marks: Q.1: 30, Q.2: 50)

Full Marks: 80

1. Let
$$\underline{X} = \begin{bmatrix} X_1 \\ \vdots \\ X_L \end{bmatrix}$$
, $L \ge 2$, be a $\mathcal{N}(\underline{0}_{L \times 1}, \underline{I}_L)$ random vector, and $\bar{X} = \frac{X_1 + X_2 + \dots + X_L}{L}$

The random vector $\underline{Y} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_L \end{bmatrix}$ is given by $Y_i \triangleq X_i - \beta \bar{X}$, $i = 1, \dots, L$, where β is a deterministic real constant. We can express \underline{Y} as $\underline{Y} = \underline{BX}$, where \underline{B} is a deterministic $L \times L$ matrix. Let $V = \sqrt{\frac{\underline{X}^T \underline{Y}}{L}}$ and $U = \sqrt{\frac{\underline{Y}^T \underline{Y}}{L}}$.

- (a) Find the two values of β for which V and U have the same distribution. [4]
- (b) For the value of β for which both V and U are Nakagami distributed with second moment 1:

(i) Find the c.f. of V^2 . [4]

Using the central limit theorem (CLT), find (in terms of L), the approximate c.f. of \mathcal{V}^2 for large L.

(ii) Find the c.d.f. of V^2 for L=6.

(iv) Calculate the probability $\Pr\left\{V > \frac{2}{\sqrt{3}}\right\}$ for L=6 and for L=30 (use the Q-function approximation wherever applicable). [2+2]

(c) For $L = 2, \beta = 1$ and $L = 2, \beta = 2$:

(i) Find the joint p.d.f. $f_{Y_1,Y_2}(y_1, y_2)$ and the c.f. of $Y_1^2 + Y_2^2$.

(ii) Find the p.d.f. of $|Y_1 + Y_2|$.

[2+2]

(d) Let the p.d.f. of $|Y_1 + Y_2|$ for $L = 2, \beta = 1$ be denoted by the function $g(\cdot)$. Let S_1, S_2, S_3, S_4 be i.i.d. random variables, with p.d.f.

$$f_{S_i}(x) = 0.4g(x-1) + 0.6g(x-2), \quad i = 1, 2, 3, 4.$$

Calculate the probability $\Pr\{(S_1 + S_2 + S_3 + S_4)^2 < 40\}.$ [4]

2. A WSS complex-valued circular Gaussian random process Z(t) is expressed as

$$Z(t) = X(t) + \jmath Y(t),$$

where $j = \sqrt{-1}$ and X(t) and Y(t) are real-valued jointly WSS Gaussian random processes. The random process Z(t) has mean $\mu_Z = \mu_X + j\mu_Y$, with $\mu_X = \text{Re}(\mu_Z) > 0$, $\mu_Y = \text{Im}(\mu_Z) > 0$, autocorrelation function

$$R_Z(t_1, t_2) = \mathbf{E}\left[Z(t_1)Z^*(t_2)\right] = \left\{ (256)^{-|t_1 - t_2|} \cos\left(4\pi(t_1 - t_2)\right) \right\} + |\mu_Z|^2,$$

and pseudo-autocorrelation function

$$\tilde{R}_{Z}(t_{1}, t_{2}) = \mathbf{E}\left[Z(t_{1})Z(t_{2})\right] = 2 + \jmath\left(2\sqrt{3}\right).$$

[2+2+3+3]

(a) Find the following:

(i) the mean μ_Z ,

(ii) the cross-covariance function

$$K_{XY}(t_1, t_2) = \mathbf{E}[(X(t_1) - \mu_X)(Y(t_2) - \mu_Y)],$$

(iii) the autocovariance function

$$K_X(t_1, t_2) = \mathbf{E}[(X(t_1) - \mu_X)(X(t_2) - \mu_X)],$$

(iv) the autocorrelation function

$$R_Y(t_1, t_2) = \mathbf{E}[Y(t_1)Y(t_2)]$$
.

(b) Let

$$V = V_1 + jV_2 = Z(0) + 2Z(\frac{1}{4}) + 3Z(\frac{1}{2}),$$

where $V_1 = \text{Re}(V)$, $V_2 = \text{Im}(V)$.

(i) Find the joint p.d.f. $f_{V_1,V_2}(v_1,v_2)$.

(ii) Find the c.f. of $V_1^2 - 3V_2^2$.

(iii) Using Tchebycheff's Inequality, find an upper bound on the probability

$$\Pr\{|V - \mathbf{E}(V)| \ge 5\}$$

and also calculate the exact value of this probability.

[3+3]

Let $W(t) = X(t) - \alpha Y(t)$ be a zero-mean WSS random process. Find α , the p.s.d. $S_W(f)$ of W(t), and the power of W(t). [2+6+2]

(d) Define a random vector \underline{W} as

$$\underline{W} = \left[\begin{array}{c} W_1 \\ W_2 \end{array} \right] \triangleq \left[\begin{array}{c} X\left(\frac{1}{4}\right) - \alpha Y\left(\frac{1}{4}\right) \\ X\left(\frac{1}{2}\right) - \alpha Y\left(\frac{1}{2}\right) \end{array} \right],$$

where α is as in (c). Let \underline{B} be a 2×2 matrix such that \underline{BW} has the p.d.f.

$$f_{\underline{BW}}(\underline{u}) = \frac{1}{2\pi} e^{-\frac{1}{2}\underline{u}^T\underline{u}}, \quad \underline{u} \in \mathcal{R}^2,$$
 (1)

where \mathcal{R} is the set of real numbers.

(i) Find a lower triangular matrix \underline{B} that satisfies (1) and has positive diagonal elements.

(ii) Calculate
$$\mathbf{E}[W_1W_2^3]$$
, $\mathbf{E}[\underline{W}^T\underline{B}\underline{W}]$, and $\mathbf{E}[\sqrt{(\underline{W}^T\underline{B}^T\underline{B}\underline{W})^3}]$. [2+2+4]